复数 |
|
例如:cx = cx (+-*/) "2i",cx = cx (+-*/) 2,cx = cx (+-*/) cx2;
可以使用 cx^.5 获取复数的平方根;也可以使用 cx^'*' 获取共轭复数值。要获取复数,您需要调用函数 complex.to( num )
从以下地址下载完整包
AK 2007年10月3日:如果可以对 Lua 核心(5.1.2)本身进行修补,可以考虑在以下地址使用 LNUM 修补程序
它使复数成为 Lua 内部数字类型(定义 LNUM_COMPLEX、LNUM_INT32,使用 C99 兼容编译器)。与 Lua 5.1.2 完全兼容,包括扩展模块等。
-- complex 0.3.0 -- Lua 5.1 -- 'complex' provides common tasks with complex numbers -- function complex.to( arg ); complex( arg ) -- returns a complex number on success, nil on failure -- arg := number or { number,number } or ( "(-)<number>" and/or "(+/-)<number>i" ) -- e.g. 5; {2,3}; "2", "2+i", "-2i", "2^2*3+1/3i" -- note: 'i' is always in the numerator, spaces are not allowed -- a complex number is defined as carthesic complex number -- complex number := { real_part, imaginary_part } -- this gives fast access to both parts of the number for calculation -- the access is faster than in a hash table -- the metatable is just a add on, when it comes to speed, one is faster using a direct function call -- http://luaforge.net/projects/LuaMatrix -- https://lua-users.lua.ac.cn/wiki/ComplexNumbers -- Licensed under the same terms as Lua itself. --/////////////-- --// complex //-- --/////////////-- -- link to complex table local complex = {} -- link to complex metatable local complex_meta = {} -- complex.to( arg ) -- return a complex number on success -- return nil on failure local _retone = function() return 1 end local _retminusone = function() return -1 end function complex.to( num ) -- check for table type if type( num ) == "table" then -- check for a complex number if getmetatable( num ) == complex_meta then return num end local real,imag = tonumber( num[1] ),tonumber( num[2] ) if real and imag then return setmetatable( { real,imag }, complex_meta ) end return end -- check for number local isnum = tonumber( num ) if isnum then return setmetatable( { isnum,0 }, complex_meta ) end if type( num ) == "string" then -- check for real and complex -- number chars [%-%+%*%^%d%./Ee] local real,sign,imag = string.match( num, "^([%-%+%*%^%d%./Ee]*%d)([%+%-])([%-%+%*%^%d%./Ee]*)i$" ) if real then if string.lower(string.sub(real,1,1)) == "e" or string.lower(string.sub(imag,1,1)) == "e" then return end if imag == "" then if sign == "+" then imag = _retone else imag = _retminusone end elseif sign == "+" then imag = loadstring("return tonumber("..imag..")") else imag = loadstring("return tonumber("..sign..imag..")") end real = loadstring("return tonumber("..real..")") if real and imag then return setmetatable( { real(),imag() }, complex_meta ) end return end -- check for complex local imag = string.match( num,"^([%-%+%*%^%d%./Ee]*)i$" ) if imag then if imag == "" then return setmetatable( { 0,1 }, complex_meta ) elseif imag == "-" then return setmetatable( { 0,-1 }, complex_meta ) end if string.lower(string.sub(imag,1,1)) ~= "e" then imag = loadstring("return tonumber("..imag..")") if imag then return setmetatable( { 0,imag() }, complex_meta ) end end return end -- should be real local real = string.match( num,"^(%-*[%d%.][%-%+%*%^%d%./Ee]*)$" ) if real then real = loadstring( "return tonumber("..real..")" ) if real then return setmetatable( { real(),0 }, complex_meta ) end end end end -- complex( arg ) -- same as complex.to( arg ) -- set __call behaviour of complex setmetatable( complex, { __call = function( _,num ) return complex.to( num ) end } ) -- complex.new( real, complex ) -- fast function to get a complex number, not invoking any checks function complex.new( ... ) return setmetatable( { ... }, complex_meta ) end -- complex.type( arg ) -- is argument of type complex function complex.type( arg ) if getmetatable( arg ) == complex_meta then return "complex" end end -- complex.convpolar( r, phi ) -- convert polar coordinates ( r*e^(i*phi) ) to carthesic complex number -- r (radius) is a number -- phi (angle) must be in radians; e.g. [0 - 2pi] function complex.convpolar( radius, phi ) return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta ) end -- complex.convpolardeg( r, phi ) -- convert polar coordinates ( r*e^(i*phi) ) to carthesic complex number -- r (radius) is a number -- phi must be in degrees; e.g. [0� - 360�] function complex.convpolardeg( radius, phi ) phi = phi/180 * math.pi return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta ) end --// complex number functions only -- complex.tostring( cx [, formatstr] ) -- to string or real number -- takes a complex number and returns its string value or real number value function complex.tostring( cx,formatstr ) local real,imag = cx[1],cx[2] if formatstr then if imag == 0 then return string.format( formatstr, real ) elseif real == 0 then return string.format( formatstr, imag ).."i" elseif imag > 0 then return string.format( formatstr, real ).."+"..string.format( formatstr, imag ).."i" end return string.format( formatstr, real )..string.format( formatstr, imag ).."i" end if imag == 0 then return real elseif real == 0 then return ((imag==1 and "") or (imag==-1 and "-") or imag).."i" elseif imag > 0 then return real.."+"..(imag==1 and "" or imag).."i" end return real..(imag==-1 and "-" or imag).."i" end -- complex.print( cx [, formatstr] ) -- print a complex number function complex.print( ... ) print( complex.tostring( ... ) ) end -- complex.polar( cx ) -- from complex number to polar coordinates -- output in radians; [-pi,+pi] -- returns r (radius), phi (angle) function complex.polar( cx ) return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] ) end -- complex.polardeg( cx ) -- from complex number to polar coordinates -- output in degrees; [-180�,180�] -- returns r (radius), phi (angle) function complex.polardeg( cx ) return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] ) / math.pi * 180 end -- complex.mulconjugate( cx ) -- multiply with conjugate, function returning a number function complex.mulconjugate( cx ) return cx[1]^2 + cx[2]^2 end -- complex.abs( cx ) -- get the absolute value of a complex number function complex.abs( cx ) return math.sqrt( cx[1]^2 + cx[2]^2 ) end -- complex.get( cx ) -- returns real_part, imaginary_part function complex.get( cx ) return cx[1],cx[2] end -- complex.set( cx, real, imag ) -- sets real_part = real and imaginary_part = imag function complex.set( cx,real,imag ) cx[1],cx[2] = real,imag end -- complex.is( cx, real, imag ) -- returns true if, real_part = real and imaginary_part = imag -- else returns false function complex.is( cx,real,imag ) if cx[1] == real and cx[2] == imag then return true end return false end --// functions returning a new complex number -- complex.copy( cx ) -- copy complex number function complex.copy( cx ) return setmetatable( { cx[1],cx[2] }, complex_meta ) end -- complex.add( cx1, cx2 ) -- add two numbers; cx1 + cx2 function complex.add( cx1,cx2 ) return setmetatable( { cx1[1]+cx2[1], cx1[2]+cx2[2] }, complex_meta ) end -- complex.sub( cx1, cx2 ) -- subtract two numbers; cx1 - cx2 function complex.sub( cx1,cx2 ) return setmetatable( { cx1[1]-cx2[1], cx1[2]-cx2[2] }, complex_meta ) end -- complex.mul( cx1, cx2 ) -- multiply two numbers; cx1 * cx2 function complex.mul( cx1,cx2 ) return setmetatable( { cx1[1]*cx2[1] - cx1[2]*cx2[2],cx1[1]*cx2[2] + cx1[2]*cx2[1] }, complex_meta ) end -- complex.mulnum( cx, num ) -- multiply complex with number; cx1 * num function complex.mulnum( cx,num ) return setmetatable( { cx[1]*num,cx[2]*num }, complex_meta ) end -- complex.div( cx1, cx2 ) -- divide 2 numbers; cx1 / cx2 function complex.div( cx1,cx2 ) -- get complex value local val = cx2[1]^2 + cx2[2]^2 -- multiply cx1 with conjugate complex of cx2 and divide through val return setmetatable( { (cx1[1]*cx2[1]+cx1[2]*cx2[2])/val,(cx1[2]*cx2[1]-cx1[1]*cx2[2])/val }, complex_meta ) end -- complex.divnum( cx, num ) -- divide through a number function complex.divnum( cx,num ) return setmetatable( { cx[1]/num,cx[2]/num }, complex_meta ) end -- complex.pow( cx, num ) -- get the power of a complex number function complex.pow( cx,num ) if math.floor( num ) == num then if num < 0 then local val = cx[1]^2 + cx[2]^2 cx = { cx[1]/val,-cx[2]/val } num = -num end local real,imag = cx[1],cx[2] for i = 2,num do real,imag = real*cx[1] - imag*cx[2],real*cx[2] + imag*cx[1] end return setmetatable( { real,imag }, complex_meta ) end -- we calculate the polar complex number now -- since then we have the versatility to calc any potenz of the complex number -- then we convert it back to a carthesic complex number, we loose precision here local length,phi = math.sqrt( cx[1]^2 + cx[2]^2 )^num, math.atan2( cx[2], cx[1] )*num return setmetatable( { length * math.cos( phi ), length * math.sin( phi ) }, complex_meta ) end -- complex.sqrt( cx ) -- get the first squareroot of a complex number, more accurate than cx^.5 function complex.sqrt( cx ) local len = math.sqrt( cx[1]^2+cx[2]^2 ) local sign = (cx[2]<0 and -1) or 1 return setmetatable( { math.sqrt((cx[1]+len)/2), sign*math.sqrt((len-cx[1])/2) }, complex_meta ) end -- complex.ln( cx ) -- natural logarithm of cx function complex.ln( cx ) return setmetatable( { math.log(math.sqrt( cx[1]^2 + cx[2]^2 )), math.atan2( cx[2], cx[1] ) }, complex_meta ) end -- complex.exp( cx ) -- exponent of cx (e^cx) function complex.exp( cx ) local expreal = math.exp(cx[1]) return setmetatable( { expreal*math.cos(cx[2]), expreal*math.sin(cx[2]) }, complex_meta ) end -- complex.conjugate( cx ) -- get conjugate complex of number function complex.conjugate( cx ) return setmetatable( { cx[1], -cx[2] }, complex_meta ) end -- complex.round( cx [,idp] ) -- round complex numbers, by default to 0 decimal points function complex.round( cx,idp ) local mult = 10^( idp or 0 ) return setmetatable( { math.floor( cx[1] * mult + 0.5 ) / mult, math.floor( cx[2] * mult + 0.5 ) / mult }, complex_meta ) end --// metatable functions complex_meta.__add = function( cx1,cx2 ) local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 ) return complex.add( cx1,cx2 ) end complex_meta.__sub = function( cx1,cx2 ) local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 ) return complex.sub( cx1,cx2 ) end complex_meta.__mul = function( cx1,cx2 ) local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 ) return complex.mul( cx1,cx2 ) end complex_meta.__div = function( cx1,cx2 ) local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 ) return complex.div( cx1,cx2 ) end complex_meta.__pow = function( cx,num ) if num == "*" then return complex.conjugate( cx ) end return complex.pow( cx,num ) end complex_meta.__unm = function( cx ) return setmetatable( { -cx[1], -cx[2] }, complex_meta ) end complex_meta.__eq = function( cx1,cx2 ) if cx1[1] == cx2[1] and cx1[2] == cx2[2] then return true end return false end complex_meta.__tostring = function( cx ) return tostring( complex.tostring( cx ) ) end complex_meta.__concat = function( cx,cx2 ) return tostring(cx)..tostring(cx2) end -- cx( cx, formatstr ) complex_meta.__call = function( ... ) print( complex.tostring( ... ) ) end complex_meta.__index = {} for k,v in pairs( complex ) do complex_meta.__index[k] = v end return complex --///////////////-- --// chillcode //-- --///////////////--
测试代码
local complex = require "complex" local cx,cx1,cx2,re,im -- complex.to / complex call cx = complex { 2,3 } assert( tostring( cx ) == "2+3i" ) cx = complex ( 2 ) assert( tostring( cx ) == "2" ) assert( cx:tostring() == 2 ) cx = complex "2^2+3/2i" assert( tostring( cx ) == "4+1.5i" ) cx = complex ".5-2E-3i" assert( tostring( cx ) == "0.5-0.002i" ) cx = complex "3i" assert( tostring( cx ) == "3i" ) cx = complex "2" assert( tostring( cx ) == "2" ) assert( cx:tostring() == 2 ) assert( complex "2 + 4i" == nil ) -- complex.new cx = complex.new( 2,3 ) assert( tostring( cx ) == "2+3i" ) -- complex.type assert( complex.type( cx ) == "complex" ) assert( complex.type( {} ) == nil ) -- complex.convpolar( radius, phi ) assert( complex.convpolar( 3, 0 ):round(10) == complex "3" ) assert( complex.convpolar( 3, math.pi/2 ):round(10) == complex "3i" ) assert( complex.convpolar( 3, math.pi ):round(10) == complex "-3" ) assert( complex.convpolar( 3, math.pi*3/2 ):round(10) == complex "-3i" ) assert( complex.convpolar( 3, math.pi*2 ):round(10) == complex "3" ) -- complex.convpolardeg( radius, phi ) assert( complex.convpolardeg( 3, 0 ):round(10) == complex "3" ) assert( complex.convpolardeg( 3, 90 ):round(10) == complex "3i" ) assert( complex.convpolardeg( 3, 180 ):round(10) == complex "-3" ) assert( complex.convpolardeg( 3, 270 ):round(10) == complex "-3i" ) assert( complex.convpolardeg( 3, 360 ):round(10) == complex "3" ) -- complex.tostring( cx,formatstr ) cx = complex "2+3i" assert( complex.tostring( cx ) == "2+3i" ) assert( complex.tostring( cx, "%.2f" ) == "2.00+3.00i" ) -- does not support a second argument assert( tostring( cx, "%.2f" ) == "2+3i" ) -- complex.polar( cx ) local r,phi = complex.polar( {3,0} ) assert( r == 3 ) assert( phi == 0 ) local r,phi = complex.polar( {0,3} ) assert( r == 3 ) assert( phi == math.pi/2 ) local r,phi = complex.polar( {-3,0} ) assert( r == 3 ) assert( phi == math.pi ) local r,phi = complex.polar( {0,-3} ) assert( r == 3 ) assert( phi == -math.pi/2 ) -- complex.polardeg( cx ) local r,phi = complex.polardeg( {3,0} ) assert( r == 3 ) assert( phi == 0 ) local r,phi = complex.polardeg( {0,3} ) assert( r == 3 ) assert( phi == 90 ) local r,phi = complex.polardeg( {-3,0} ) assert( r == 3 ) assert( phi == 180 ) local r,phi = complex.polardeg( {0,-3} ) assert( r == 3 ) assert( phi == -90 ) -- complex.mulconjugate( cx ) cx = complex "2+3i" assert( complex.mulconjugate( cx ) == 13 ) -- complex.abs( cx ) cx = complex "3+4i" assert( complex.abs( cx ) == 5 ) -- complex.get( cx ) cx = complex "2+3i" re,im = complex.get( cx ) assert( re == 2 ) assert( im == 3 ) -- complex.set( cx, re, im ) cx = complex "2+3i" complex.set( cx, 3, 2 ) assert( cx == complex "3+2i" ) -- complex.is( cx, re, im ) cx = complex "2+3i" assert( complex.is( cx, 2, 3 ) == true ) assert( complex.is( cx, 3, 2 ) == false ) -- complex.copy( cx ) cx = complex "2+3i" cx1 = complex.copy( cx ) complex.set( cx, 1, 1 ) assert( cx1 == complex "2+3i" ) -- complex.add( cx1, cx2 ) cx1 = complex "2+3i" cx2 = complex "3+2i" assert( complex.add(cx1,cx2) == complex "5+5i" ) -- complex.sub( cx1, cx2 ) cx1 = complex "2+3i" cx2 = complex "3+2i" assert( complex.sub(cx1,cx2) == complex "-1+1i" ) -- complex.mul( cx1, cx2 ) cx1 = complex "2+3i" cx2 = complex "3+2i" assert( complex.mul(cx1,cx2) == complex "13i" ) -- complex.mulnum( cx, num ) cx = complex "2+3i" assert( complex.mulnum( cx, 2 ) == complex "4+6i" ) -- complex.div( cx1, cx2 ) cx1 = complex "2+3i" cx2 = complex "3-2i" assert( complex.div(cx1,cx2) == complex "i" ) -- complex.divnum( cx, num ) cx = complex "2+3i" assert( complex.divnum( cx, 2 ) == complex "1+1.5i" ) -- complex.pow( cx, num ) cx = complex "2+3i" assert( complex.pow( cx, 3 ) == complex "-46+9i" ) cx = complex( -121 ) cx = cx^.5 -- we have to round here due to the polar calculation of the squareroot cx = cx:round( 10 ) assert( cx == complex "11i" ) cx = complex"2+3i" assert( cx^-2 ~= 1/cx^2 ) assert( cx^-2 == (cx^-1)^2 ) assert( tostring( cx^-2 ) == tostring( 1/cx^2 ) ) -- complex.sqrt( cx ) cx = complex( -121 ) assert( complex.sqrt( cx ) == complex "11i" ) cx = complex "2-3i" cx = cx^2 assert( cx:sqrt() == complex "2-3i" ) -- complex.ln( cx ) cx = complex "3+4i" assert( cx:ln():round( 4 ) == complex "1.6094+0.9273i" ) -- complex.exp( cx ) cx = complex "2+3i" assert( cx:ln():exp() == complex "2+3i" ) -- complex.conjugate( cx ) cx = complex "2+3i" assert( cx:conjugate() == complex "2-3i" ) -- metatable -- __add cx = complex "2+3i" assert( cx+2 == complex "4+3i" ) -- __unm cx = complex "2+3i" assert( -cx == complex "-2-3i" )